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ABSTRACT

The objectives of this work are to:

- Formulate the static problem of a compliant riser
idealized as a slender non-rotationally uniform rod
with bending, extensional and torsional degrees of

freecom.

- Present an embedding technique used to solve the
general two-dimensional and three-dimensional static
problems of a buoyant compliant riser.

- Present examples from the static analysis of buoyant
compliant riser configurations in the presence and
absence of external currents.
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NOMENCLATURE

EA

EIEE EI

EIEE 'EInn
e

total inner and outer cross-sectional area of
riser tubes; total outer cross-sectional area
of riser tubes and buoyancy modules

buoyancy per unit length of buoyancy modules
in water

=2 for y<h,  and zero otherwise

mean internal fluid speed; for our application
p,icz« P

centroid of a cross-section

static rotation matrix

normal mean drag and tangential frictional
coefficients

drag coefficient of a buoyancy module for flow
parallel to %

maximum dimension of a cross-section
dimensions of the cross-section of Figure 2-1
Young's modulus

extensional rigidity

maximum and minimum bending rigidities of a
cross-section

effective rigidities EIEE—CZJEE;EInn-ch?”
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g

GgiP,G1P
e

hi’hw

JR;J1

L, L,

4

m , m

-

My

p

p!

external hydrodynamic force per unit length
(excluding gravity effects):

o= g £ n "

F, [FH, Foo FH]. U

acceleration of gravity

torsional and effective torsional rigidity

1P - 2 J%C

internal fluid and salt water elevations above

the axes origin
mass inertia per unit length tensor of riser

material and buoyancy modules

3o diag[J;C,Jgg,Jnn]

R R !
and internal fluid

r

o gt .EE .nn

where diagl ] stands for diagonal matrix
unstretched riser length, buoyancy module
length

(WR+Wb)/g, (W } /g

R b
external hydrodynamic moment per unit length

+W, +W
1

internal overpressure due to well (i.e. total
internal static pressure minus p;)

internal pressure due to gravity,oig(hi—y)



D-i:pw

external pressure due to gravity,P,g{h -y)
tension in riser material

wetted perimeter of a cross-section,

Pf” = P+ ¢y (A -A )/CsLy
shear force in the t and 7, direction
stretched and unstretched length of the
centerline
time
effective tension
array of unit vectors (1, §. K]T
+

) > > . T
array of unit vectors [Zp £4s7p]

current velocity
+
vel[v,0,V,]Us=
' E n "
(vg. Vi VO].U0

[0, vE

n "
o vol. ug

effective weight per unit length,

$W 4W, -B -g”

W =W b b

R

average effective weight per wunit length in
water

buoyancy module material, internal fluid and
riser materials weights per unit length
coordinates of C in the inertial frame

internal fluid and salt water densities



Euler angles

. i
vector rate of rotation of Cgéin

the rod,

-
a=1[a%,q%,a" 1.u"

frame

along
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Chapter 1
INTRODUCTION AND OQUTLINE

Compliant risers are assemblages of pipes with very small
overall bending rigidity used to convey oil from the ocean
floor or a subsurface buoy to a surface platform. A compliant
riser is permitted to acquire large static deformations
because of its small bending rigidity and readjusts its
configuration in response tec large slow motions of the
supporting platforms, to which it 1is rigidly connected,
without excessive stressing. Compliant risers have been wused
successfully in protected waters in buoy loading stations for
tankers. Extensions of shallow water concepts have been
recently proposed by the industry as alternatives to
conventional production risers, because they simplify the
overall production system.

The purpose of this work is to:

- Formulate the static problem of a compliant riser
idealized as a slender non-rotatiocnally uniform rod
with bending, extensional and torsional degrees of
freedom.

- Present an embedding technique to solve the general
two-dimensional and three- dimensional static
problems of a buoyant compliant riser.

- Present examples from the static analysis of buoyant

compliant riser configurations in the presence and
absence of external currents.
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This work is organized as follows:

- Chapter 2 provides a complete formulation of the
static problem together with a summary of the
assumpt ions hecessary for its derivation. This
Chapter provides the governing equations and
boundary conditions and explicit expressions for the
external loads.

- Chapter 3 provides a numerical solution algorithm
using an embedding technique,

- Chapter 4 provides numerical results for a buoyant
riser configuration with uniformly distributed

buoyancy modules, and

- Chapter 5 provides numerical results for a buoyant
riser configuration with a single large buoyancy
module.



13

Chapter 2
PROBLEM FORMULATION

2.1 Model Assumptions

A mathematical model for the static behavior of slender
elastic rods undergoing large deformations with small strains
is given in Love [1] and Landau and Lifshitz [2]. The
modification to account for dynamic effects and the presence
of a heavy fluid inside and outside the tube modelled as a
slender rod can be found in Nordgren (3] and Patrikalakis (4].
Methods for the computation of the motion of elastic rods with
equal principal stiffnesses and with torque applied at the
ends can be found in Nordgren {5,3]1 and without torque in
Garrett [6].

Patrikalakis and Chryssostomidis [7] extended the
mathematical model derived in Nordgren [3] and Patrikalakis
[4] to allow the computation of non-linear motions of an
assemblage of tubes modelled as a non-rotationally wuniform
slender elastic rod with space varying torque. Their model
also accounts for the effects of a steady internal flow.

In this work, we specialize the model developed in
patrikalakis and Chryssostomidis [7] to allow the computation

of static responses. The static equations are derived from



14

the general dynamic equations by setting the components of the
velocity and angular velocity equal to zero and replacing the
external loads with their mean values. The mean values of the
external loads may, however, strongly depend upon the dynamic
response, such as in the case of vortex induced dynamic lift,
see Patrikalakis and Chryssostomidis [8,9]. Given that the
dynamic response depends upon the static response, {(e.g. upon
the static tension), statics and dynamics are, 1in fact,
non-linearly coupled. We believe that this coupling may be
analyzed with an iterative procedure and we, therefore,
consider the static loads as given functions of the static
orientation and position of the riser and the external
excitation.

Following Patrikalakis and Chryssostomidis [7], we summarize

the basic assumptions of our mathematical model for the static

problem:

1. The compliant riser is modelled as a single
non-rotationally uniform rod rather than as an
assemblage of interacting rods or shells. We make
this idealization in order to reduce the degrees of
freedom and to allow analysis of the lobal
behavior of our system with the currently available
. e - »
information on the structural characteristics of
such structures,

2. The materials employed 1in the construction of
different layers of compliant risers are assumed to
be homogeneous, isotropic and linearly elastic.

3. Strains are assumed to remain uniformly small
although deformations may become large.

4. Shearing deformations are neglected, Rayleigh
slender beam theory, see Crandall et al [10].

5. Thermal effects are neglected,
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Further theoretical and experimental research might be

necessary to quantify the errors implied by the above list of

assumptions.

2.2 General Three-Dimensicnal Governing Equations and Boundary

Conditions

The static equations are derived from the general dynamic
equations, Patrikalakis and Chryssostomidis [7], by setting
the components of velocity and angular velocity eqgual to zero
and replacing the external loads with their mean values. This
procedure leads to:

1. Three force equations:

BP0 TS o R SO« S -1

Tos Qogowogo wc12+FH0 0 (2.1)
E _aNab N_ye0 +r& =

Oos Q090+Togo wc22+FH0 0 (2.2)
n E nErC we® LN =

Qos"ToQo"'QGQ':)'"4‘1324":Hc:'O {2.3)

2. Three moment eguations:

P~E N 188 aNAEme =

(GIeQO)s+(EIe -EI3 )QOQO+MH0-0 (2.4)
EE & P crMM~ZaN_ AN

(EIe QO)S+(GIe—EIe )QOQO-QD-O (2.5)
nmaN [ I3 S G PN -

(EIe QO)S-(GIE-EIE ):2090+QO-0 (2.6)

3. Three equations relating the derivatives of the Euler

angles with the Euler angles and the components of g
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- [bes n

¢os = (Qos1nw0 + rooswo)/cose0 (2.7)
- b Nes

Bys = SCOSY, - LA (2.8)
- G .

Vos = Qo+¢ossmeo (2.9a)

or using equation (2.7)

- ob s n
Vog = Qo+taneo(Qos1nwo+ﬂocoswo) (2.9b)

4. Three equations relating the derivatives of the Cartesian

coordinates X3 ¥ and z, with the Euler angles:

Xos = (I+eo)coseocos¢0 (2.10)
Yoo * (1+e0)coseosin¢0 (2.11)
Z, = -(1+e0)sin80 (2.12)

5. The equation for the stretched arc length s; :

sgs = ]+e0 {2.13)

where subscript or superscript o denotes static quantities and
subscript s denotes derivative with respect to the unstretched
arc length, s, of the centerline, To simplify the notation,
subscript o has been omitted in the superscripts ¢ , & and n.,

The elements, C?j , of the complete 3 x 3 static rotation

]

matrix, Co , between U and U0 defined by



17

Uy = CaU (2.14.0)

are given below in terms of the static Euler angles:

C{H = cosb  cos¢, (2.14.1)
c?z = cos8,sing, _ (2.14.2)
cd = -sine (2.14.3)
13 0

0 _ s .
c51 = sing _siny cos¢, - cosy sing (2.14.4)
Cop = sin siny sing + cosy cos¢, (2.14.5)

Co3 = cosf, siny, (2.14.6)

0
a1 = sineocos¢bcos¢b+ sin¢651n¢o (2.14.7)
0
Cqp = sin8 cosy sing - siny cos¢, (2.14.8)
{2.14.9)

Cgh = coseocosﬂb

A geometric interpretation of the Euler angles used in this
work can be found in Patrikalakis and Chryssostomidis [7].
To complete the set of governing equations, the constitutive

relation between To and e0 needs to be used:
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T,= EA e, (2.15)

In the case of the general threé—dimensional static problem
No = 13 boundary conditions are necessary to complete the
statement of the problem. For the case of a buoyant riser
configuration, de Oliveira and Morton [1ll]) and de Oliveira et
al [12], an appropriate set of boundary conditions involves
the prescription of ¢0, eo, Yo Xo ¢ Yo and z, at s=0 and s=L
and s*(0)=0. For the case of a catenary configuration,
Panicker and Yancey [13], the above boundary conditions at s=0
need to be modified to also express the equilibrium of

interaction forces and moments and kinematic compatibility

with the lower rigid riser section.
2.3 External Forces and Moments

The prediction of the external loads ;Ho and ;Ho is,
perhaps, one of the more important factors in a successful
analysis of the static behavior of compliant risers, Until
rational methods allow the prediction of these lcads in
separated flows, approximate estimates based on strip theory
and experimental two-dimensional flow models may be used for
design purposes, see Patrikalakis [4] and Patrikalakis and
Chryssostomidis {8]. Due to lack of appropriate experimental
data for compliant riser geometries, we adopt the following
procedure based on Sarpkaya and Isaacson [14] to estimate the

. + .
external static force FH0 due to a current, We assume first
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that the external current velocity is a given function of y,

and of the following form:

Viyg)=0¥, (5,),0.Y, ()1 (2.16)

Using equation (2.14) we can estimate the components V% , V%

> -

-+ -+
and Vg of V in the 1local Co' Eo and no system at a

particular point C on the riser centerline:

T T
[V V5, 07 = €TV, (y,)40,Y, ()]

The component of v orthogonal to EO, denoted by §§7 , €an

be obtained from:
W = EE ™ (2.17)

The static drag force perpendicular to 25 and in the

=
direction of V%n is expressed as:

2En . JEn g En
Flio = 0-50,D¢CpV5 "V, | (2.18)

where Df is the maximum frontal dimension of the cross-section
orthogonal to Gg” and CD is a drag coefficient, which depends
at least upon the geometry of the cross- section, its
orientation and Reynolds number and 1is primarily due to

separation and wake formation. Using (2.17} and (2.18), the

=
drag forces in the directions £q and ﬁo can be obtained from:

& 2 E N
FHo = O.EQwa(s)CDVO|V0 | (2.19)
n o n7En '
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To simplify our calculations we further assume that we can

approximate a compliant riser cross-section as in Figure 2-1

below

-
na
—_— 3 oV
-
/_ yEn

. \>)D”/ 2

Figure 2-1: Cross-section Idealization

for our estimates of Dg . We observe that the cross-section
£

in Figure 2-1 reduces to a circle if D° =D and will provide a

correct estimate of Dy for an arbitrary number of tubes of
+ . 3
equal dlameter arranged along the N axis consecutively in a

series, From the assumed geometry we obtain:
D=(0%-0") |coso|+D" (2.21)
where
]coso!=|vgf/]vgnl (2.22)

Using (2.21) to (2.22), we can reduce (2.19%9) and (2.20) to
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Fgo = O.SQNCDVE[(DE_DW)IVEI + Dnlvgﬂl] (2.24)

Elongated compliant riser sections are expected to
experience & small (static) lift orthogonal to Eo and ﬁg”,
which is however neglected in this work due to lack of
appropriate experimental data. In all subseguent analysis
(2.23) and (2.24) will be used to predict the static forces in
the'a) and ﬁb directions respectively. In the nﬁmerical

DE and Dn are functions of s. We can

implementation,
therefore model risers, the cross-sections of which are
multiple adjacent tubes 1in a series possibly covered with
circular buoyancy modules over part of their length.

For the evaluation of the drag force parallel to Eo we
distinguish two separate contributing mechanisms. First, a

frictional component which can be evaluated from:
f En Ziyt
F 0.5pwP (s)CfV°|V0| (2.25)

where PEN(s) is the length of the wetted perimeter of the
cross- section and Cf a frictional coefficient which is at
least two orders of magnitude less than (5 . Second, we
distinguish a separation dfag parallel tf:fo due to presence
of buoyancy modules. It is possible to incorporate this
effect in an equation which provides the total drag force in
the Eo direction, while keeping the form of equation (2.25) by

writing:
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Fio=0.50,PE(s)CAVE VY] (2.26)
where PE1(S) is an "equivalent™ wetted perimeter defined by
CA(AL-A )
En(g)pEN(s) + D b7Ro!
Pa (s)=P="(s) + Co L (2.27)

1
where C is a separation drag coefficient for the buoyancy

D

modules for a flow parallel to %}, Ap ., Ao the cross-sectional
area of the buoyancy modules and riser tubes and Lb the length
of the buoyancy modules. Within the bare part of the
compliant riser we can set Ab =A0 and therefore get Pinfs) =
Pgn(s) to recover (2,25). Within the part of the riser
covered by buoyancy modules, equations (2.26) and (2.27) also
allow a uniformly distributed force due to separation.

Finally, we need to provide estimates for the external
torgque per unit length, Nﬁb . Within ideal flow theory, the
presence of Mﬁo can be explained because the cross-section 1s
not, 1in general, symmetrical about an axis orthogonal to §%n
on the Eono plane, see Newman [15]. Due to lack of
experimental data for real flow conditions, we estimate the

external torque per unit length from potential theory, Newman

[15], using:

oo omE - oM vEWD
Mio = (m> - ml) vevy (2.28)
where mf and m: are the added masses per unit length in the

+ + - -
Eo and g directions. The values of the added masses are

considered functions of s in our implementation and therefore
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allow Mﬁo to become zero for circular cross-sections.
-3n
Denoting by ¢ the angle between Eo and Vgn , equation (2.28)

can be reduced to the following form:

2
Mﬁo=0.5(m§-mg)s1nzc|v§”| (2.29)

This equation indicates that for a particular cross-section

and current velocity, the external torque reaches an extremum

when ¢ =(2n-1)r /4 for n=1,2,3,4.
2.4 Non-Dimensional Three-Dimensional Equations

It is convenient to convert the governing equations to a

first order system of ordinary differential equations of the

following symbolic form:

W =T (s,w) (2.30)

-
wvhere wo(s) is the solution vector and ?6 a given (non-linear)
function of 30 and s. For the general three-dimensional

static problem we choose:

E aN.al o8 on. ) ekl
O'QO’QO’QO,QO,QD'dJO’eO’ O,XO,_YO,ZO,SS] (2.31)

w,=[T
with Ny= 13 unknown scalar variables. The first twelve
variables are coupled in the governing equations, while s;(s)
can be determined from (2.13) and (2.15) once the computation
of To is completed.
Before proceeding to bring the governing equations in the

form (2.30), it is convenient to introduce non-dimensional

variables, Forces are non-dimensionalized by WkL, where W, is
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the average effective weight per wunit length of the riser
fully submerged in water. Lengths are non-dimensionalized by
I, the unstretched length of the riser. We also introduce the

following non-dimensional parameters:

8P (s)=_L°/61°(s) (2.32)
85(s) = W L /E1%8(s) (2.33)
&"(s) = WL /EIM(s) (2.34)
y(s) = W,L/EA(s) (2.35)
W(s.y,) = Wis,y )/W, (2.36)

and from now we denote non-dimensional quantities with the
same symbol as dimensional quantities, If we wish to refer to
a dimensional quantity, we will state this explicitly. The
resulting non-dimensional equations describing three-

dimensional statics of a compliant riser with torsion are:

Nk G
Llc12+Qo 0 QoQo FHo (2.37)

0s

9, +QU-T - £& (2.38)

£
Qos o0 Ho



g
0s

0s

0
HCas

Prub n &y oNak Py oF
-8PImMe +(1/87-1/87)2 2+ (1/87) (9]

£ ELC n
* TOQO - Qoﬂo - Fuo

25

8°0Q"- (1/6P-178Ma%aD- (176%) 5]

Nra& p [ APRIN 4 My SN
-8 [Qo-(1/8 -1/8 )QOQO+(1/B )590]

&e s n
+
(Qosunwo roos¢o)/coseo

£ n. .
rooswo Qos1nw0

0%
0

s n
+tan80[QOs1nwo+roosw0]

8]
(T+wT0)c]1

0
(]+YTO)C12

0
(1+YTO)C13

1+YTO

(2.

39)

.40)

41)

.42)

.43)

.44)

.45)

.46)

.47)

.48)

.49)
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where the elements C?j of the static transformation matrix can

be evaluated from (2.14) in terms of the Euler angles,

The boundary conditions appropriate for a buoyant riser

configuration, such as in de Oliveira and Morton (11], are:

X5(0)=3,(0)=2(0) = 5.(0) = 0 (2.50)
6,(0) =y (0) =0 (2.51)

4,(0) = 6p (2.52)

xo (1 )=xqs Yol )ovgs 261 )=2y (2.53)
(2.54)

o1 )=075 8, (1 )=873 Yol )=¥y

2.5 Non-Dimensional Two-Dimensional Equations Without Torsion

In this case the solution vector {(2.31} reduces to NO— 7

non-trivial components:
"; = [T QE.Q"I. “x 'S*]T
o Os 0: 0s¢09 Osyoa 0 (2.55)
The non-dimensional governing equations describing the
two-dimensional static problem without torsion in the 173

plane obtained from (2.37) to (2.49) using (2.14) are:

= Lcs E-N_pL
Tos = Lsine  + Qo0 -Fi (2.56)
£ . n &
Qos ueose, - TOQO-FH0 (2.57)
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n _ Nrat m SN

b, = -8[Q; + (1/87) 9] (2.58)
bos = QS (2.59)

Xgg = (YT )cosd (2.60)

Yoo = (1+W0)sin¢o (2.61)

sgs = 1+YTO (2.62)

The boundary conditions appropriate for a buoyant riser

configuration, such as in de Oliveira and Morton [11], are:

xO(O) = yO(O) = S;(U] =0 {2.63)
¢0(0) = ¢B (2.64)
XO(I) = XTs ‘yO(]) = yT (265)
¢0(1) = ¢T (2.66)

- >
In the two-dimensional case, the Q)andao components of the

-
external force due to current V(yo) = Vx(yo)T reduce to:



where:

28

Fﬁo = r#cos¢0fcos¢0|
o = —ksing |sing_|
Ho ro )

ke (5,9420.50, PE(S)C eV, () 1V, (¥ )] /4,

|<(s,yo)=0.5:>WDE(S)CDVX(}IO) [V, (v )74,

(2.67)

(2.68)

(2.69)

(2.70)
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Chapter 3
NUMERICAL SOLUTION ALGORITHM

1.1 Introduction

General methods for the solution of two-point boundary value
problems can be found in Keller (16], Ferziger [17] and
Pereyra [18]. We start our discussion from the solution of
the general three-dimensional static problem with torsion
described by equations (2.37) to (2.49). In this work, we
solve equations (2.37) to {(2.49), supplemented by boundary
conditions (2.50) to {2.54), by embedding our problem into a

more general class of boundary value problems. Symbolically

our problem:

wi=t(s.w), a[w(0),w(1)] =0 (3.71)

where prime denotes derivative with respect to s,
W=[w](s),w2(s)...wN(s)]T is the solution vector,

-+ T

-'F=[f'| ,fz. - -fN]To 9=[91 992- . 'gN] ’

0cs<l, and [ ]T denotes transpose
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is embedded into

w'=F(s,w;e), 9[W(0},W(l);€)=0 (3.72)

where ¢ is a continuation parameter, 0<e < 1 , and when g=1
equations {(2.71) and {(2,72) are identical.

Using the embedding technique, a sequence of problems with
values of € such that 0=g; <g, ...< sp=1 are solved. The
solution of the problem involving €, uses as initial
approximation the solution of the problem involving ¢,

In our embedding technique for the case of a buoyant riser

configuration in a general current, we replace

- equation (2.16) by
V050 1710 (7 )PV (5 Vo (g IOV (g e Ly )V 3 DI (3.73)

equation (2.52) by

€)= - 3.74
9o(0:€) = g +e(dg-dg;) (3.74)
equations (2.53) by
xo(] €)= XT1+€(XT'XT1) (3.75.1)
Yo(1:€) = yps*telyr-yy;) (3.75.2)
(3.75.3)

20(1 ;E) = ZT.i'l's(zT“ZT.i )

and equations (2.54) by



31

¢0(1 jE) = ¢T1+E(¢T-¢T1') (3.76.1)
Bo(i;e) = Bﬁ-"‘e(&r-eﬁ) (3.76.2)
190(1;5) = ‘Pﬁ*E(WT-lbﬁ) (3-?6-3)

where subscript 1 denotes an initial problem, €=0, for
which the full solution of the corresponding boundary value
problem is available. This solution may, for example, be the
result of a previous step of our procedure. We also note that
by selecting Vaoi o 1 o eTi and wTito be zero, the resulting
initial problem, €=0, is a two- dimensional static probilenm
without torsion, which |is relatively simpler to solve. We,
therefore, see that we can start the soluﬁion of the general
three- dimensional problem from the solution of the
two-dimensional problem which we treat next. Solutions of
this problem, with the method explained in the sequel have
been published by Chryssostomidis and Patrikalakis [19].

In our embedding technique for the case of a two-dimensional
configuration of a buoyant riser {in the H f plane) in a

moderate to strong current in the x direction, we replace

- %((yo)lvx(yo)t in equations (2.69}) and (2.70) by
AR N AR v IV, 1]

where ﬁ; is the mean current speed of the original
problem



32

- uin equations (2.56) and (2.57) by eu , and
- x7 and yI in equatlons (2. 65) by x+ + € (x )
Y7

and yr *.€ , where XT and YT are deginedTin
Sectlon 3.2.

In this manner, we obtain an initial problem, =0, which

- is easier to solve than the actual problem (e =1},
so we can start our solution process without
difficulty, see Section 3.2, and
- expresses the balance of all major external and
restoring forces of the original problem correctly,
everywhere 1n 0 < s < 1
For the case of a buoyant riser in a moderate to strong
current, the major external force is the normal drag, and the
major restoring force is the effective tension except near the
ends where bending becomes also important. Using our
embedding technique, we cobtain an initial problem, ¢ =0, which
corresponds to a neutrally buoyant riser in a moderate to
strong constant current. This idealization, therefore, gives
us a correct estimate of the order of magnitude of both
external and restoring forces.
For the case of a buoyant riser in a weak Or zeroc current
our embedding technique involves the following steps:
- we determine the response of the actual riser 1in a
fictitious moderate constant current, V. . , using

the procedure outlined above, and X

- we replace V, (y )IV (y )| in equations (2.69) and
(2.70) by

AR R AR RCAIE N[

X1 xi1
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In the case of a weak current the two step process 1S
necessary in order to determine an initial configuration for
the second step which includes the effects of effective
weight, which now plays a significant role.

The solution of egquation (3.72) was obtained using. a
non-uniform grid finite difference method, see Pereyra [18].
The non-uniform grid was necessary to permit an efficient
resoluytion of boundary layers near s=0 and s=1, see
Patrikalakis [4]. The solution of the finite difference
equations is based on- 3 modified Newton's ite;ation method
coupled with a deferred correction technique also described in
Pereyra [18]. This method uses an approximate solution of the
problem and yields a more accurate solution which makes the
absolute error less than a prespecified tolerance. During the
solution process, additional grid points may be inserted
automatically to reduce and to equidistribute the error on the
final mesh. Our code uses the Fortran library NAG [20] and
has been implemented on an IBM 370/168 mainframe. All

arithmetic was done in double precision (15 decimal digits}.

3.2 Initial Asymptotic Approximation of the Two-Dimensional

Solution

In this Section, we derive an approximate solution of the
two- dimensional static problem for e=0 corresponding to a
neutrally buoyant compliant riser in a constant current. For
simplicity we neglect frictional forces because of their small

effect in the determination of effective tension. In addition
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we use the mean frontal diameter, 5£ , in the estimation of
the normal drag force., Finally we assume that y=0 Dbecause
the extensional rigidity of the riser is very large. With

these assumptions the resulting governing equations are:

cnE ol 0f =T oD ‘2 3.77
TOS = Qo Q> Q05 Togo * xsin"¢, ( )
N = _aNrpt n n = AN
Q¢ = =B LQ+(1/87) 2015 0,0 = 2 (3.78)
= = si .7
Xgg = €OSb s Yoo = SiNg, (3.79)
where
= ner v oIy
< = 0.5, D°Cy V|V, [/H, (3.80)

A uniform leading order approximation of ¢, (s} can be found by

simple boundary layer theory, see Carrier and Pearscn [21], to

be
b.(s) = ¢2(s) + ¢](s)+¢2(s) (3.81)
0 0 0 0 y
where
¢g(s) = Arctan[-1/{xs+c}]+6 (3.82)

¢;(S) = [¢Bf¢g(0)]exp{—s[fgs”(0)]1’2} (3.83)
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¢§(s) = [¢T-¢g(1)]eXD{-(T-S)[TOB”(l)]”2} (3.84)

6=0 if -{As+c)>0, &=r if -(as+c)<0 . (3.85)
A= &/T, (3.86)
c is a constant of integration and TL the leading order

estimate of the tension, which in our case is independent of
S.
Imposing the boundary conditions (2.65) and neglecting the

contributions of ¢l (s) and.¢§(s), because they are small, we

obtain

(1/a)[1/sin¢g(0)-1/sin¢g(1)]-xT =0 2.87)

'(1/1)1n{tan[¢g(1)/2]/tan[¢g(o)/2]}-yT =0 (3.88)

Equations (3.86) to (3.88) are three algebraic equations for
A, ¢ and ?B which are solved by Powell's hybrid method, see
Powell [22] and therefore equation (3.,81) is now fully
determined. This in turn allows us to obtain leading order
approximations for T,, Q%,sfh x, and y . When we integrate

equations (3.79) using {(3.81), we obtain x {1)=x and y0(1)=yi
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where x+ and y+ are close to but not identical to ¥ and yy

This small discrepancy is rectified by our embedding procedure
in which we replace x; by x+ + € (xT—x+) and yr by yp+

E(YT"Y.;. )-



37

Chapter &
NUMERICAL RESULTS FOR A BUOYANT RISER CONFIGURATION WITH

UNIFORMLY DISTRIBUTED BUOYANCY MODULES

The structural design details of the buoyant compliant riser
analyzed in this work can be found in de Oliveira and Morton
f11].  The riser is made up of two fléxible tubes with inner
diameter of 85.7 mm and outer diameter of 122.9 mm, clamped
together as in Figure 4-1 .

The overall riser characteristics are: L=88.392 m;
WeW =2.92 N/m; EA=267 MN; g™ 3.3 kN.nl; EITC =12.2
kN.m2:GiP=0.582 MN.m?; DF=0.31 m; D'=0.20 m; pE” =0.93 m;
A0=237.4 cmz;Ai=115.4 cm?: pi=820 kg/m3; p=3.45 MPa; <¢=0;
n=49.93 kg/m; m-=40.47 kg/m; mf =82.44 kg/m; nl =50.32 kg/m;
vertical distance of lower support, s=0, from ocean floor 18
7.62 m. The value of the effective weight was taken constant
because it was assumed that buoyancy is provided by small

uniformly distributed modules, Patrikalakis [4]. If this is

not the case the local value of W should be used. For the
: € 0 En z

same reason, effective constant values of D°, D, Pe , m, m=,

mg and mg are used in this paper. Due to presence of strain

relief units at the ends, the following values of bending and

torsional rigidities at s=0 and s=L were used: EIM =6.6



38

BUOYANCY COLLAR AND BUNDLE CLAMPS
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BUNDLE DATA
FLEXIBLE HOSE QD = 4.60"
CONTROL LINE OD = 2.40"

Figure 4-1:  Buoyant Compliant Riser Concept Proposed In [11]
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enom?; E1S5 =24.4 kN.m?; GI =1.164 MN.m°. These rigidities
wvere assumed to decay linearly to the previous values within
10 m from s=0 and s=L. In addition, for all excitatign
conditions studied in this paper we used ¢B = ¢1 = 90 degrees;
BT = Qs 2, = 0 : and CD = 1 and C.F = 0,05,

The excitation cases we investigate in this paper correspond
to the expected minimum and maximum water depth for the
application described in de Oliveira and Morton {11]. 1In Case

i, the water depth was 80.77 m; hw=hi=73'15 m; xT=O and

yT=?0.10 m. In Case 2, the water depth was 92.96 m;
hw=hi=85'34 m; xT=6.10 m and yT=82.30 m, For Case 1, two
two-dimensional and four three-dimensional excitation
conditions were examined. Condition 1 involves two-

dimensional excitation (without torsion) by a unidirectional
linear strong current with Vx(0)=l.03 m/s and Vx(hw)=l'55 m/s.
In this condition, ﬁb(L)=0r leading to a two-dimensional
configuration without torsion. Condition 2 <corresponds to
¥ (L)=0 and a zero current and represents a "buckled”
two-dimensional configuration of the riser due to its own
weight in the XY plane. Figures 4-2 and 4-3 show the results
of Case 1, Condition 1 and Figures 4-4¢ and 4-5 the results of
Case 1, Condition 2, obtained by executing our two-dimensional
static program, For Case 1, Condition 1, the initial
approximation for our embedding technique was obtained using
the method of Section 3.2 for a constant current equal to 1.29
m/s, the mean value of the actual current. For Case 1,

Condition 2, the initial approximation for our embedding
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technique was obtained using the method of Section 3.2 for a
weak constant current equal to 0.1 m/s. Our embedding
procedure, in both cases slowly applies the effective weight
forces and modifies the current to the actual profile (linear
and zero current, respectively). Figures 4-2 and 4-4 show the
displacement x {solid line} and the angle ¢<)(dashed line) as
a function of y,. Figures 4-3 and 4-5 show the component of
the rate of rotation Qg (solid line) and the effective tension
T, {dashed  line} as a function of Yy - All variables plotted
are non-dimensional.

In Case 1, Condition 1 we observe the creation of sharp
boundary layers, the extent of which can be clearly seen from
the plot of ¢ versus y ., Figure 4.2 . Iﬁside these layers,
the .effective tension, T0 , and the component of the rate of
rotation, 92 , change very rapidly while for the remainder of
the riser length these two quantities are practically constant
as can be seen from Figure 4.3 ., Effective tension outside
the boundary layers remains essentially constant, because, as
we said earlier, our system is highly bucyed. The <curvature,
92 , outside the boundary layers remains essentially constant
because the effective tension and external force exhibit small
variations with s. The maximum effective tension for Case 1,
Condition 1 has béen estimated to be 7.974 kN and the maximum
tension 47.1 kN. The tension due to internal overgressure
amounts to 39.8 kN which shows the importance of the internal
overpressure in the estimation of tension. Note, however,

that tensile strain is directly related to effective tension,
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see equation (2.15), and, therefore, internal overpressure
affects hoop stresses primarily, at least within the
assumptions of equation (2.15). For a discussion of these
assumptions see Appendix C, Patrikalakis and Chryssostomidis
(71]. The minimum bending radius for Case 1, Condition 1 is
0.90 m. The value of the minimum bending radius 1is an
important design parameter because it affects the structural
integrity of the riser and our ability to access the well, so
care must be taken to select the appropriate strain relief
.units to control bending at the ends.

In Case 1, Condition 2, we observe the creation of a
moderately sharp internal layer around s=0.16 where the
bending moment rapidly undergoes change of sign and reaches an
extreme value. The corresponding minimum bending radius is
7.65 m which is much less critical than the bending radius
encountered in Case 1, Condition 1 involving a strong current.
This occurs because the value of the effective weight is very
small. However, the riser is nearly horizontal within the
internal layer referred to above and this may affect our
ability to easily access the well. The amount and
distribution of buoyancy and the top offset are the important
parameters in the present condition of zero current and can be
used to control the configuration of the riser. In
particular, the effect of non-uniform buoyancy distribution
may be studied, with the objective of keeping the riser as
vertical as possible for the condition of zero external

current. AS can be seen from Figure 4-5, the effective
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tension varies between -0.4453 WL or 0.12 kN at s=0 and
0.5547 waL or 0.14 at s=L becoming positive near s=0.39. The
maximum tension occurs at s=L and is equal to 39.5 kN and is
almost entirely due to the internal pressure.

For the water depth of Case 1, and in addition to the two
two-dimensional static configurations, we also studied the
effect of rotating the linear current of Condition 1 to
q: =12, 30, 60 and 90 degrees with respect to the XY plane
(i.e. from the +X to the -2 direction) with a corresponding
platform rotation ¥/{L)=10, 25, 25 and 25 degrees. The
solution for the first three-dimensional excitation condition
{ Q: =12 and {L)=10 degrees}) was obtained using the two-
dimensional solution for Case 1, Condition 1 as our initial
approximation for the starting-up of the embedding procedure.
The solution for the next three-dimensional excitation
condition q:=30 and wéL)=25 degrees) was obtained using the
previous three-dimensional solution as our initial
approximation and so on. The results of our three-dimensional
excitation conditions are shown in Figures 4-6 to 4-15 . In
Figures 4-6 and 4-7 we plot X, and z_ versus respectively.

]
In Figure 4-8 we plot X, versus'zo. In Figures 4-9 to 4-11 we
plot ¢0,60 and.w0 versus y ., respectivelyt In Figure 4-12 we
plot T, versus Y, and in Figures 4-13 to 4-15, Q% , Qi anli
ﬁQ Versus Yg. All wvariables plotted are non-dimensional.
From Figures ¢-6 to 4-8 , we observe that away from the ends

the riser nearly follows the direction of the current and its

centerline is fairly close to a planar curve, This occurs
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because the rigidity of this configuration is very small away
from the ends. However, close to the ends Figures 4-6 to 4-11
indicate that the centerline is a highly tortuocus curve. This
complicated transition near the ends is due to the effects of
the boundary conditions and the rigidity of the structure. In
Figures 4-6 and 4-8, we can see that when ©,=90 degrees (i.e.
the current is in the YZ plane), the riser does not lie on the
YZ plane, (x0=0), because of the effect of the top end
boundary condition (q}L)=25 degrees}. The riser, however, is
nearly parallel to the current direction away from the ends.
In conciusion, the highly buoyant riser under study readjusts
its configuration in response to changes of the direction of
the principal external load, i.e. the current, rather than
resist this change. This 1is an indication of 1its high
flexibility. Figures 4-9 to 4-11 clearly indicate the extent
of boundary layers near the ends, where bending effects are as
important as tension effects. Inside the boundary layer
regions, the effective tension T, (Figure 4-12), and the
components of g (Figures 4-13 to 4-15) change very rapidly
while for the remainder of the riser these gquantities are
slowly varying and nearly constant. The effective tension
outside the boundary layers remains fairly constant for the
same reason as in the two-dimensional configuration, However,
this constant value decreased with changing current direction,
from 9c=10 to 90 degrees because the projected riser area
perpendicular to the current direction decreases. For

example, looking at cross-sections near s=0.5 where ¢ =30
0
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degrees and §,=0, we cbtain w50.5)=6.4, 16.0, 20.4 and 16.9
degrees. In this case wéO.S) represents rotation angle from
the XY plane and therefore the relative rotation of the
current with respect to the cross-section is 5.6, 14, 39.4 and
73.1 degrees which together with Figure 2-1 provides an
explanation of the decrease of the projected area. Figure
4-13 for Qg indicates that the maximum torsion Qg , occurs
when 0, =60 degrees, or for a relative rotation between
current and most cross-sections close to 45 degrees, where the
torque due to the current is maximum. However, the resuting
maximum shear stress due to torsion is small, as expected from
order of magnitude estimates, and is not a critical parameter
in this case. Figures 4-14 and 4-15 show that as the current
direction changes from Gc =0 to 90 degrees, QE and QE near the
ends increase and decrease, respectively. The boundary

conditions and the change of current direction provide an

immediate explanation of this change, The bending strain,
eP . in a general three-dimensional configuration can be found
easily from sb = ﬂgn - e , where & and n are the

non-dimensional local coordinates of a point of a cross
section within the material layers participating in bending.
So, for example, the maximum bending strain at s=L for Case 1,
Condition 1 (two-dimensional configuration) is 0.068 while for
Case 1 and the three-dimensional configuration with 8. =90 and
wJL)=25 degrees the corresponding value is 0.065, The
decrease in the maximum bending strain between the two

excitation conditions is due to the decrease of the overall
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drag due to a decrease of the projected area perpendicular to

the current.
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Figure Legend (Figures 4-6 to 4-15)
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Coming now to Case 2, where the top end of the riser has an
offset of xT=6.lO m and, due to increase of water level,
yT=82.30 m. Here, again the riser is subject to & linear
strong current in the X direction with Vx(0)=1.03 m/s and
g((hw)=l.55 m/s where W¢=h1=85-34 m. In addition,wo(b)=0 and,
therefore, the riser has a two-dimensional configuration 1in
the XY plane without torsion. Figures 4-16 and 4-17 show the
results for this excitation condition, obtained be executing
our two-dimensional static program. The initial approximation
for our embedding technique was obtained using the method of
Ssection 3.2 for a constant current egqual to 1,29 m/s, the mean
value of the actual currect. As in Case 1, Conditicn 1, our
procedure slowly applies the effective weight forces and
modifies the current to the actual linear profile. Figure
4-16 shows the displacement Xx, {solid 1line) and the angle
A (dashed line)} as a function of y,. Figure 4-17 shcws the
component of the rate of rotation Qg {(solid 1line) and the
effective tension T, (dashed 1line) as a function of Yy *
Again, all variables plotted are non-dimensional.

The comments pertaining to the response for Case 1,
condition 1 also hold in the present excitation condition.
The maximum effective tension for Case 2 is equal to 16.6 KN
and the maximum tension is 55.6  KkN. The tension due to
internal overpressure again amounts to 39,8 kN. The increase
of the effective tension with respect to Case 1, Condition 1
{s a result of a decreased sag due to the change of the

position of the top end with respect to the lower end of the
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riser. Finally, the minimum bending radius for the present
case is 1.05 m, i.e. 16.4% larger than the corresponding value
for Case 1, Condition 1 and therefore less critical. AS
stated before, the value of the minimum bending radius is an

important design parameter and needs to be controlled with

appropriate strain relief units at the ends.
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Chapter 5
NUMERICAL RESULTS FOR A BUOYANT RISER WITH A SINGLE

BUQYANCY MODULE

The riser analyzed in this Section is made up of two
flexible tubes with inner diameter of 5.7 mm and outer
diameter of 122.9 mm clamped together and haviné the same
structural characteristics as in Chapter 4. However, this
riser does not have small uniformly distributed bucoyancy
modules as the riser of Chapter 4. The present riser |is
supported py a single large buoyancy module placed at
approximately 1/3 of the length from the lower end, which
gives the configuration a lazy S shape. This example was
selected because no numerical data for lazy S configurations
was avaitable to us and only in order to test our computer
program for a situation involving sharp changes of the
structural characteristics of the riser such as those
occurring in the presence of large buoyancy module or bucy at
some point along the length of the riser.

The overail riser characteristics are: L=88,392 m;
W,=125.55 N/m; EA=267 MN; A =237.4 er? ; A;=115.4 cm?;  04=820
kg/m3- p=3.45 MPa; c¢=0; vertical distance of lower support,

s=0, from ocean floor is 7.62 m,
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For the bare riser sections, we used the following

additional characteristics: w=251,1 N/m; EIWn=3.3 kN.mz;

£156212.2 kN.m%: GI'=0.582 MN.m2; D5=0.2458 m; D'=0.1229 m;
p31=0.772 m; m=49.93 kg/m, m-=40.47 kg/m; m§=0; S =48.638
kg/m; mg =12.16 kg/m; J%%=0.4932 kg.m, J;°=0.0781 kg.m. The

bare riser sections extend for 11=28.964 m and 12=57.928 m

from s=0 and s=L, respectively.

For the riser sections covered by the buoyancy module we
used: W=-7147.4 N/m; EI™M=89.1 MN.wd; EI"C=89.1 MN.m?;
61P=69.1 mN.m2; D =D"=1.269 m, p§"=2o.53 m; m=566.4 kg/m;

E -n =1296.4 kg/m;

mt=556.9  kg/m; mg =1271.4 kg/m; m; !

J5%=106.51 kg.m; J§§=O. In order to model the transition of
the structural rigidities between the bare riser sections and
those covered by the buoyancy module, we assumed that the bare
riser rigidities increased linearly to the above rigidities
within 0.2 m from each end of the buoyancy module. The
physical length of the buoyancy module is Lb=l‘5 m so that
L=1. + L+ 1_. The lower end of the buoyancy module 1is at

1 b 2

s=1 from the lower end.
1
In this work we studied two two-dimensional excitation

conditions at a water depth of 72.62 m with h,=h;=65 m, xT=20
m and yT=62 m in the presence of unidirectional strong
currents, In the first case we used a constant current with
Vx=2 m/s and the second case a linear current with Vv, (0)=1,03
m/s and V,(h, )= 1.55 m/s. Given that the average effective
weight per unit length Wa=125.55 N/m is now significant as

compared to the current force due to the mean value of the
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ﬁEVXIV I where 5£=0.263 m is the mean

current, O.SQWC X

D
diameter, we started the embedding procedure using as initial

current a very strong constant current with V, =5 m/s for which
the initial analytical approximation of Section 3.2 is
expected to be reasonable and solved the problem for Vx=5 h/s
accurately including all forces. Using this converged
solution for V =5 m/s as initial approximation, we solved the
problem for a constant current Vx=3'5 m/s using our embedding
technique. This last solution was subsequently used as
initial approximation for the solution of a static problem for
a constant current VX=2.75 m/s determined using our embedding
technique. Finally, this solution for Vx=2.75 m/s was used as
initial approximation of our first static problem involving a
constant current with speed Vx=2 m/s. The solution for VX=2
m/s was used as initial approximation for the solution of our
second static excitation case involving a linear current. In
order to accurately resolve the structural changes at the ends
of the buoyancy mocdule, a sufficiently large number of initial
points need to pe used to start the process correctly. SO0,
for example, our initial analytical solution for V=5 m/s used
120 unifermly distributed points, which provides three
discretization points within the buoyancy module. our final
solution for the constant and linear currents involves 18
discretization points within the buoyancy module out of 2
total of 195 dicretization points. The remaining 57
discretization points beyond the 120 original points are

densely distributed close to s=0, s=L, s=l1, s=11+Lb to
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provide accurate resolution of regions involving sharp changes
of the solution. The addition of new discretization points
beyond the original 120 is done automatically by the program
in order to reduce and equidistribute the error on the final
mesh [18].

Figures 5-1 to 5-3 and 5-4 to 5-6 show our results for the
constant 2 m/s current and the linear current respectively.
Figures 5-1 and 5-4 show the displacement x, (solid line) and
the angle ¢ o in degrees (dashed line} as a function of y,.
Subscript o denoting static guantities was dropped for
convenience in the figures. Figures 5-2 and 5-5 show the rate
of rotation Q% (solid 1line) and the effective tension T,
(dashed line) as a function of y,. Figures 5-3 and 5-6 show
the shear férce QE (solid line) and the tension 1in the
material Py (dashed line} as a function of yo. All variables
plotted except ¢ are non-dimensional. Lengths are
non-dimensicnalized by L and forces by waL=11.1 kN,

For the <case of constant current 2 m/s ,the buoyancy module
lies approximately between ¥o=0.1809 and 0.1854 and for the
case of the linear current between y,=0.2367 and 0.2284. In
terms of arc length the buoyancy module lies approximately

between $=0.3277 and 0.3447. The plots ofé_, 20, T, Qg and

o’ o
P, indicate a very sharp.change of the solution near the ends
and near the position of the buoyancy module, as expected.
For the constant current case the minimum bending radius

occurs at s=0 and is approximately equal to 0.406 m, while for

the weaker linear current case, this occurs near the buoyancy
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module and 1is equal to 0.440 m. This occurs because the
relative importance of the buoyancy force from the module as
compared to the normal drag force increased from the first to
the second excitation case. The above values of the bending
radii are excessively small which indicates that improvements
in the design of the system should be made, This was not
attempted because the present system and excitation were only
chosen to exhibit the applicability of our program for very
non-uniform systems. We expect however that strain relief
units at the ends and the connection with buoys and more
uniformly distributed modules will provide the tools to

achieve better performance.
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